Metamath Proof Explorer


Theorem ordtopt0

Description: An ordinal topology is T_0. (Contributed by Chen-Pang He, 8-Nov-2015)

Ref Expression
Assertion ordtopt0 ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ∈ Kol2 ) )

Proof

Step Hyp Ref Expression
1 ordtop ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 𝐽 ) )
2 onsuct0 ( 𝐽 ∈ On → suc 𝐽 ∈ Kol2 )
3 2 ordtoplem ( Ord 𝐽 → ( 𝐽 𝐽𝐽 ∈ Kol2 ) )
4 1 3 sylbid ( Ord 𝐽 → ( 𝐽 ∈ Top → 𝐽 ∈ Kol2 ) )
5 t0top ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top )
6 4 5 impbid1 ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ∈ Kol2 ) )