Description: An ordinal topology is T_0. (Contributed by Chen-Pang He, 8-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ordtopt0 | ⊢ ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ∈ Kol2 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtop | ⊢ ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ≠ ∪ 𝐽 ) ) | |
2 | onsuct0 | ⊢ ( ∪ 𝐽 ∈ On → suc ∪ 𝐽 ∈ Kol2 ) | |
3 | 2 | ordtoplem | ⊢ ( Ord 𝐽 → ( 𝐽 ≠ ∪ 𝐽 → 𝐽 ∈ Kol2 ) ) |
4 | 1 3 | sylbid | ⊢ ( Ord 𝐽 → ( 𝐽 ∈ Top → 𝐽 ∈ Kol2 ) ) |
5 | t0top | ⊢ ( 𝐽 ∈ Kol2 → 𝐽 ∈ Top ) | |
6 | 4 5 | impbid1 | ⊢ ( Ord 𝐽 → ( 𝐽 ∈ Top ↔ 𝐽 ∈ Kol2 ) ) |