Metamath Proof Explorer


Theorem ordunisuc

Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion ordunisuc OrdAsucA=A

Proof

Step Hyp Ref Expression
1 ordeleqon OrdAAOnA=On
2 suceq x=Asucx=sucA
3 2 unieqd x=Asucx=sucA
4 id x=Ax=A
5 3 4 eqeq12d x=Asucx=xsucA=A
6 eloni xOnOrdx
7 ordtr OrdxTrx
8 6 7 syl xOnTrx
9 vex xV
10 9 unisuc Trxsucx=x
11 8 10 sylib xOnsucx=x
12 5 11 vtoclga AOnsucA=A
13 sucon sucOn=On
14 13 unieqi sucOn=On
15 unon On=On
16 14 15 eqtri sucOn=On
17 suceq A=OnsucA=sucOn
18 17 unieqd A=OnsucA=sucOn
19 id A=OnA=On
20 16 18 19 3eqtr4a A=OnsucA=A
21 12 20 jaoi AOnA=OnsucA=A
22 1 21 sylbi OrdAsucA=A