Description: An ordinal class is equal to the union of its successor. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ordunisuc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeleqon | |
|
2 | suceq | |
|
3 | 2 | unieqd | |
4 | id | |
|
5 | 3 4 | eqeq12d | |
6 | eloni | |
|
7 | ordtr | |
|
8 | 6 7 | syl | |
9 | vex | |
|
10 | 9 | unisuc | |
11 | 8 10 | sylib | |
12 | 5 11 | vtoclga | |
13 | sucon | |
|
14 | 13 | unieqi | |
15 | unon | |
|
16 | 14 15 | eqtri | |
17 | suceq | |
|
18 | 17 | unieqd | |
19 | id | |
|
20 | 16 18 19 | 3eqtr4a | |
21 | 12 20 | jaoi | |
22 | 1 21 | sylbi | |