Metamath Proof Explorer


Theorem orng0le1

Description: In an ordered ring, the ring unity is positive. (Contributed by Thierry Arnoux, 21-Jan-2018)

Ref Expression
Hypotheses orng0le1.1 0˙=0F
orng0le1.2 1˙=1F
orng0le1.3 ˙=F
Assertion orng0le1 FoRing0˙˙1˙

Proof

Step Hyp Ref Expression
1 orng0le1.1 0˙=0F
2 orng0le1.2 1˙=1F
3 orng0le1.3 ˙=F
4 orngring FoRingFRing
5 eqid BaseF=BaseF
6 5 2 ringidcl FRing1˙BaseF
7 4 6 syl FoRing1˙BaseF
8 eqid F=F
9 5 3 1 8 orngsqr FoRing1˙BaseF0˙˙1˙F1˙
10 7 9 mpdan FoRing0˙˙1˙F1˙
11 5 8 2 ringlidm FRing1˙BaseF1˙F1˙=1˙
12 4 6 11 syl2anc2 FoRing1˙F1˙=1˙
13 10 12 breqtrd FoRing0˙˙1˙