Metamath Proof Explorer


Theorem otthne

Description: Contrapositive of the ordered triple theorem. (Contributed by Scott Fenton, 31-Jan-2025)

Ref Expression
Hypotheses otthne.1 AV
otthne.2 BV
otthne.3 CV
Assertion otthne ABCDEFADBECF

Proof

Step Hyp Ref Expression
1 otthne.1 AV
2 otthne.2 BV
3 otthne.3 CV
4 1 2 3 otth ABC=DEFA=DB=EC=F
5 4 notbii ¬ABC=DEF¬A=DB=EC=F
6 3ianor ¬A=DB=EC=F¬A=D¬B=E¬C=F
7 5 6 bitri ¬ABC=DEF¬A=D¬B=E¬C=F
8 df-ne ABCDEF¬ABC=DEF
9 df-ne AD¬A=D
10 df-ne BE¬B=E
11 df-ne CF¬C=F
12 9 10 11 3orbi123i ADBECF¬A=D¬B=E¬C=F
13 7 8 12 3bitr4i ABCDEFADBECF