Metamath Proof Explorer


Theorem oveq123d

Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008)

Ref Expression
Hypotheses oveq123d.1 φF=G
oveq123d.2 φA=B
oveq123d.3 φC=D
Assertion oveq123d φAFC=BGD

Proof

Step Hyp Ref Expression
1 oveq123d.1 φF=G
2 oveq123d.2 φA=B
3 oveq123d.3 φC=D
4 1 oveqd φAFC=AGC
5 2 3 oveq12d φAGC=BGD
6 4 5 eqtrd φAFC=BGD