Metamath Proof Explorer


Theorem ovmpodv2

Description: Alternate deduction version of ovmpo , suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Hypotheses ovmpodv2.1 φ A C
ovmpodv2.2 φ x = A B D
ovmpodv2.3 φ x = A y = B R V
ovmpodv2.4 φ x = A y = B R = S
Assertion ovmpodv2 φ F = x C , y D R A F B = S

Proof

Step Hyp Ref Expression
1 ovmpodv2.1 φ A C
2 ovmpodv2.2 φ x = A B D
3 ovmpodv2.3 φ x = A y = B R V
4 ovmpodv2.4 φ x = A y = B R = S
5 eqidd φ x C , y D R = x C , y D R
6 4 eqeq2d φ x = A y = B A x C , y D R B = R A x C , y D R B = S
7 6 biimpd φ x = A y = B A x C , y D R B = R A x C , y D R B = S
8 nfmpo1 _ x x C , y D R
9 nfcv _ x A
10 nfcv _ x B
11 9 8 10 nfov _ x A x C , y D R B
12 11 nfeq1 x A x C , y D R B = S
13 nfmpo2 _ y x C , y D R
14 nfcv _ y A
15 nfcv _ y B
16 14 13 15 nfov _ y A x C , y D R B
17 16 nfeq1 y A x C , y D R B = S
18 1 2 3 7 8 12 13 17 ovmpodf φ x C , y D R = x C , y D R A x C , y D R B = S
19 5 18 mpd φ A x C , y D R B = S
20 oveq F = x C , y D R A F B = A x C , y D R B
21 20 eqeq1d F = x C , y D R A F B = S A x C , y D R B = S
22 19 21 syl5ibrcom φ F = x C , y D R A F B = S