Metamath Proof Explorer


Theorem ovmpox2

Description: The value of an operation class abstraction. Variant of ovmpoga which does not require D and x to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010) (Revised by Mario Carneiro, 20-Dec-2013)

Ref Expression
Hypotheses ovmpox2.1 x = A y = B R = S
ovmpox2.2 y = B C = L
ovmpox2.3 F = x C , y D R
Assertion ovmpox2 A L B D S H A F B = S

Proof

Step Hyp Ref Expression
1 ovmpox2.1 x = A y = B R = S
2 ovmpox2.2 y = B C = L
3 ovmpox2.3 F = x C , y D R
4 3 a1i A L B D S H F = x C , y D R
5 1 adantl A L B D S H x = A y = B R = S
6 2 adantl A L B D S H y = B C = L
7 simp1 A L B D S H A L
8 simp2 A L B D S H B D
9 simp3 A L B D S H S H
10 4 5 6 7 8 9 ovmpordx A L B D S H A F B = S