Metamath Proof Explorer


Theorem ovprc

Description: The value of an operation when the one of the arguments is a proper class. Note: this theorem is dependent on our particular definitions of operation value, function value, and ordered pair. (Contributed by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypothesis ovprc1.1 ReldomF
Assertion ovprc ¬AVBVAFB=

Proof

Step Hyp Ref Expression
1 ovprc1.1 ReldomF
2 df-ov AFB=FAB
3 df-br AdomFBABdomF
4 1 brrelex12i AdomFBAVBV
5 3 4 sylbir ABdomFAVBV
6 ndmfv ¬ABdomFFAB=
7 5 6 nsyl5 ¬AVBVFAB=
8 2 7 eqtrid ¬AVBVAFB=