Metamath Proof Explorer


Theorem p0le

Description: Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011) (Revised by NM, 13-Sep-2018)

Ref Expression
Hypotheses p0le.b B=BaseK
p0le.g G=glbK
p0le.l ˙=K
p0le.0 0˙=0.K
p0le.k φKV
p0le.x φXB
p0le.d φBdomG
Assertion p0le φ0˙˙X

Proof

Step Hyp Ref Expression
1 p0le.b B=BaseK
2 p0le.g G=glbK
3 p0le.l ˙=K
4 p0le.0 0˙=0.K
5 p0le.k φKV
6 p0le.x φXB
7 p0le.d φBdomG
8 1 2 4 p0val KV0˙=GB
9 5 8 syl φ0˙=GB
10 1 3 2 5 7 6 glble φGB˙X
11 9 10 eqbrtrd φ0˙˙X