Metamath Proof Explorer


Theorem p1evtxdeq

Description: If an edge E which does not contain vertex U is added to a graph G (yielding a graph F ), the degree of U is the same in both graphs. (Contributed by AV, 2-Mar-2021)

Ref Expression
Hypotheses p1evtxdeq.v V=VtxG
p1evtxdeq.i I=iEdgG
p1evtxdeq.f φFunI
p1evtxdeq.fv φVtxF=V
p1evtxdeq.fi φiEdgF=IKE
p1evtxdeq.k φKX
p1evtxdeq.d φKdomI
p1evtxdeq.u φUV
p1evtxdeq.e φEY
p1evtxdeq.n φUE
Assertion p1evtxdeq φVtxDegFU=VtxDegGU

Proof

Step Hyp Ref Expression
1 p1evtxdeq.v V=VtxG
2 p1evtxdeq.i I=iEdgG
3 p1evtxdeq.f φFunI
4 p1evtxdeq.fv φVtxF=V
5 p1evtxdeq.fi φiEdgF=IKE
6 p1evtxdeq.k φKX
7 p1evtxdeq.d φKdomI
8 p1evtxdeq.u φUV
9 p1evtxdeq.e φEY
10 p1evtxdeq.n φUE
11 1 2 3 4 5 6 7 8 9 p1evtxdeqlem φVtxDegFU=VtxDegGU+𝑒VtxDegVKEU
12 1 fvexi VV
13 snex KEV
14 12 13 pm3.2i VVKEV
15 opiedgfv VVKEViEdgVKE=KE
16 14 15 mp1i φiEdgVKE=KE
17 opvtxfv VVKEVVtxVKE=V
18 14 17 mp1i φVtxVKE=V
19 16 18 6 8 9 10 1hevtxdg0 φVtxDegVKEU=0
20 19 oveq2d φVtxDegGU+𝑒VtxDegVKEU=VtxDegGU+𝑒0
21 1 vtxdgelxnn0 UVVtxDegGU0*
22 xnn0xr VtxDegGU0*VtxDegGU*
23 8 21 22 3syl φVtxDegGU*
24 23 xaddridd φVtxDegGU+𝑒0=VtxDegGU
25 11 20 24 3eqtrd φVtxDegFU=VtxDegGU