Description: If an edge E which does not contain vertex U is added to a graph G (yielding a graph F ), the degree of U is the same in both graphs. (Contributed by AV, 2-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | p1evtxdeq.v | |
|
p1evtxdeq.i | |
||
p1evtxdeq.f | |
||
p1evtxdeq.fv | |
||
p1evtxdeq.fi | |
||
p1evtxdeq.k | |
||
p1evtxdeq.d | |
||
p1evtxdeq.u | |
||
p1evtxdeq.e | |
||
p1evtxdeq.n | |
||
Assertion | p1evtxdeq | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | p1evtxdeq.v | |
|
2 | p1evtxdeq.i | |
|
3 | p1evtxdeq.f | |
|
4 | p1evtxdeq.fv | |
|
5 | p1evtxdeq.fi | |
|
6 | p1evtxdeq.k | |
|
7 | p1evtxdeq.d | |
|
8 | p1evtxdeq.u | |
|
9 | p1evtxdeq.e | |
|
10 | p1evtxdeq.n | |
|
11 | 1 2 3 4 5 6 7 8 9 | p1evtxdeqlem | |
12 | 1 | fvexi | |
13 | snex | |
|
14 | 12 13 | pm3.2i | |
15 | opiedgfv | |
|
16 | 14 15 | mp1i | |
17 | opvtxfv | |
|
18 | 14 17 | mp1i | |
19 | 16 18 6 8 9 10 | 1hevtxdg0 | |
20 | 19 | oveq2d | |
21 | 1 | vtxdgelxnn0 | |
22 | xnn0xr | |
|
23 | 8 21 22 | 3syl | |
24 | 23 | xaddridd | |
25 | 11 20 24 | 3eqtrd | |