Metamath Proof Explorer


Theorem 1hevtxdg0

Description: The vertex degree of vertex D in a graph G with only one hyperedge E is 0 if D is not incident with the edge E . (Contributed by AV, 2-Mar-2021)

Ref Expression
Hypotheses 1hevtxdg0.i φiEdgG=AE
1hevtxdg0.v φVtxG=V
1hevtxdg0.a φAX
1hevtxdg0.d φDV
1hevtxdg0.e φEY
1hevtxdg0.n φDE
Assertion 1hevtxdg0 φVtxDegGD=0

Proof

Step Hyp Ref Expression
1 1hevtxdg0.i φiEdgG=AE
2 1hevtxdg0.v φVtxG=V
3 1hevtxdg0.a φAX
4 1hevtxdg0.d φDV
5 1hevtxdg0.e φEY
6 1hevtxdg0.n φDE
7 df-nel DE¬DE
8 6 7 sylib φ¬DE
9 1 fveq1d φiEdgGA=AEA
10 fvsng AXEYAEA=E
11 3 5 10 syl2anc φAEA=E
12 9 11 eqtrd φiEdgGA=E
13 8 12 neleqtrrd φ¬DiEdgGA
14 fveq2 x=AiEdgGx=iEdgGA
15 14 eleq2d x=ADiEdgGxDiEdgGA
16 15 notbid x=A¬DiEdgGx¬DiEdgGA
17 16 ralsng AXxA¬DiEdgGx¬DiEdgGA
18 3 17 syl φxA¬DiEdgGx¬DiEdgGA
19 13 18 mpbird φxA¬DiEdgGx
20 1 dmeqd φdomiEdgG=domAE
21 dmsnopg EYdomAE=A
22 5 21 syl φdomAE=A
23 20 22 eqtrd φdomiEdgG=A
24 23 raleqdv φxdomiEdgG¬DiEdgGxxA¬DiEdgGx
25 19 24 mpbird φxdomiEdgG¬DiEdgGx
26 ralnex xdomiEdgG¬DiEdgGx¬xdomiEdgGDiEdgGx
27 25 26 sylib φ¬xdomiEdgGDiEdgGx
28 2 eleq2d φDVtxGDV
29 4 28 mpbird φDVtxG
30 eqid VtxG=VtxG
31 eqid iEdgG=iEdgG
32 eqid VtxDegG=VtxDegG
33 30 31 32 vtxd0nedgb DVtxGVtxDegGD=0¬xdomiEdgGDiEdgGx
34 29 33 syl φVtxDegGD=0¬xdomiEdgGDiEdgGx
35 27 34 mpbird φVtxDegGD=0