Description: The vertex degree of vertex D in a graph G with only one hyperedge E is 0 if D is not incident with the edge E . (Contributed by AV, 2-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 1hevtxdg0.i | |
|
1hevtxdg0.v | |
||
1hevtxdg0.a | |
||
1hevtxdg0.d | |
||
1hevtxdg0.e | |
||
1hevtxdg0.n | |
||
Assertion | 1hevtxdg0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hevtxdg0.i | |
|
2 | 1hevtxdg0.v | |
|
3 | 1hevtxdg0.a | |
|
4 | 1hevtxdg0.d | |
|
5 | 1hevtxdg0.e | |
|
6 | 1hevtxdg0.n | |
|
7 | df-nel | |
|
8 | 6 7 | sylib | |
9 | 1 | fveq1d | |
10 | fvsng | |
|
11 | 3 5 10 | syl2anc | |
12 | 9 11 | eqtrd | |
13 | 8 12 | neleqtrrd | |
14 | fveq2 | |
|
15 | 14 | eleq2d | |
16 | 15 | notbid | |
17 | 16 | ralsng | |
18 | 3 17 | syl | |
19 | 13 18 | mpbird | |
20 | 1 | dmeqd | |
21 | dmsnopg | |
|
22 | 5 21 | syl | |
23 | 20 22 | eqtrd | |
24 | 23 | raleqdv | |
25 | 19 24 | mpbird | |
26 | ralnex | |
|
27 | 25 26 | sylib | |
28 | 2 | eleq2d | |
29 | 4 28 | mpbird | |
30 | eqid | |
|
31 | eqid | |
|
32 | eqid | |
|
33 | 30 31 32 | vtxd0nedgb | |
34 | 29 33 | syl | |
35 | 27 34 | mpbird | |