Metamath Proof Explorer


Theorem pcndvds

Description: Defining property of the prime count function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcndvds PN¬PPpCntN+1N

Proof

Step Hyp Ref Expression
1 nnz NN
2 nnne0 NN0
3 1 2 jca NNN0
4 pczndvds PNN0¬PPpCntN+1N
5 3 4 sylan2 PN¬PPpCntN+1N