Database
REAL AND COMPLEX NUMBERS
Integer sets
Upper sets of integers
peano2uz
Next ⟩
peano2uzs
Metamath Proof Explorer
Ascii
Unicode
Theorem
peano2uz
Description:
Second Peano postulate for an upper set of integers.
(Contributed by
NM
, 7-Sep-2005)
Ref
Expression
Assertion
peano2uz
⊢
N
∈
ℤ
≥
M
→
N
+
1
∈
ℤ
≥
M
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
M
∈
ℤ
2
peano2z
⊢
N
∈
ℤ
→
N
+
1
∈
ℤ
3
2
3ad2ant2
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
N
+
1
∈
ℤ
4
zre
⊢
M
∈
ℤ
→
M
∈
ℝ
5
zre
⊢
N
∈
ℤ
→
N
∈
ℝ
6
letrp1
⊢
M
∈
ℝ
∧
N
∈
ℝ
∧
M
≤
N
→
M
≤
N
+
1
7
5
6
syl3an2
⊢
M
∈
ℝ
∧
N
∈
ℤ
∧
M
≤
N
→
M
≤
N
+
1
8
4
7
syl3an1
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
M
≤
N
+
1
9
1
3
8
3jca
⊢
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
→
M
∈
ℤ
∧
N
+
1
∈
ℤ
∧
M
≤
N
+
1
10
eluz2
⊢
N
∈
ℤ
≥
M
↔
M
∈
ℤ
∧
N
∈
ℤ
∧
M
≤
N
11
eluz2
⊢
N
+
1
∈
ℤ
≥
M
↔
M
∈
ℤ
∧
N
+
1
∈
ℤ
∧
M
≤
N
+
1
12
9
10
11
3imtr4i
⊢
N
∈
ℤ
≥
M
→
N
+
1
∈
ℤ
≥
M