Metamath Proof Explorer


Theorem pexmidlem5N

Description: Lemma for pexmidN . (Contributed by NM, 2-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pexmidlem.l ˙=K
pexmidlem.j ˙=joinK
pexmidlem.a A=AtomsK
pexmidlem.p +˙=+𝑃K
pexmidlem.o ˙=𝑃K
pexmidlem.m M=X+˙p
Assertion pexmidlem5N KHLXApAX¬pX+˙˙X˙XM=

Proof

Step Hyp Ref Expression
1 pexmidlem.l ˙=K
2 pexmidlem.j ˙=joinK
3 pexmidlem.a A=AtomsK
4 pexmidlem.p +˙=+𝑃K
5 pexmidlem.o ˙=𝑃K
6 pexmidlem.m M=X+˙p
7 n0 ˙XMqq˙XM
8 1 2 3 4 5 6 pexmidlem4N KHLXApAXq˙XMpX+˙˙X
9 8 expr KHLXApAXq˙XMpX+˙˙X
10 9 exlimdv KHLXApAXqq˙XMpX+˙˙X
11 7 10 biimtrid KHLXApAX˙XMpX+˙˙X
12 11 necon1bd KHLXApAX¬pX+˙˙X˙XM=
13 12 impr KHLXApAX¬pX+˙˙X˙XM=