Metamath Proof Explorer


Theorem pfx0

Description: A prefix of an empty set is always the empty set. (Contributed by AV, 3-May-2020)

Ref Expression
Assertion pfx0 prefix L =

Proof

Step Hyp Ref Expression
1 opelxp L V × 0 V L 0
2 pfxval V L 0 prefix L = substr 0 L
3 swrd0 substr 0 L =
4 2 3 eqtrdi V L 0 prefix L =
5 1 4 sylbi L V × 0 prefix L =
6 df-pfx prefix = s V , l 0 s substr 0 l
7 ovex s substr 0 l V
8 6 7 dmmpo dom prefix = V × 0
9 5 8 eleq2s L dom prefix prefix L =
10 df-ov prefix L = prefix L
11 ndmfv ¬ L dom prefix prefix L =
12 10 11 syl5eq ¬ L dom prefix prefix L =
13 9 12 pm2.61i prefix L =