Metamath Proof Explorer


Theorem pfx0

Description: A prefix of an empty set is always the empty set. (Contributed by AV, 3-May-2020)

Ref Expression
Assertion pfx0 prefixL=

Proof

Step Hyp Ref Expression
1 opelxp LV×0VL0
2 pfxval VL0prefixL=substr0L
3 swrd0 substr0L=
4 2 3 eqtrdi VL0prefixL=
5 1 4 sylbi LV×0prefixL=
6 df-pfx prefix=sV,l0ssubstr0l
7 ovex ssubstr0lV
8 6 7 dmmpo domprefix=V×0
9 5 8 eleq2s LdomprefixprefixL=
10 df-ov prefixL=prefixL
11 ndmfv ¬LdomprefixprefixL=
12 10 11 eqtrid ¬LdomprefixprefixL=
13 9 12 pm2.61i prefixL=