Description: A subword of an empty set is always the empty set. (Contributed by AV, 31-Mar-2018) (Revised by AV, 20-Oct-2018) (Proof shortened by AV, 2-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | swrd0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp | |
|
2 | opelxp | |
|
3 | swrdval | |
|
4 | fzonlt0 | |
|
5 | 4 | biimprd | |
6 | 5 | con2d | |
7 | 6 | impcom | |
8 | ss0 | |
|
9 | 7 8 | nsyl | |
10 | dm0 | |
|
11 | 10 | a1i | |
12 | 11 | sseq2d | |
13 | 9 12 | mtbird | |
14 | 13 | iffalsed | |
15 | ssidd | |
|
16 | 4 | biimpac | |
17 | 10 | a1i | |
18 | 15 16 17 | 3sstr4d | |
19 | 18 | iftrued | |
20 | zre | |
|
21 | zre | |
|
22 | lenlt | |
|
23 | 22 | bicomd | |
24 | 20 21 23 | syl2anr | |
25 | fzo0n | |
|
26 | 24 25 | bitrd | |
27 | 26 | biimpac | |
28 | 27 | mpteq1d | |
29 | 28 | dmeqd | |
30 | ral0 | |
|
31 | dmmptg | |
|
32 | 30 31 | mp1i | |
33 | 29 32 | eqtrd | |
34 | mptrel | |
|
35 | reldm0 | |
|
36 | 34 35 | mp1i | |
37 | 33 36 | mpbird | |
38 | 19 37 | eqtrd | |
39 | 14 38 | pm2.61ian | |
40 | 39 | 3adant1 | |
41 | 3 40 | eqtrd | |
42 | 41 | 3expb | |
43 | 2 42 | sylan2b | |
44 | 1 43 | sylbi | |
45 | df-substr | |
|
46 | ovex | |
|
47 | 46 | mptex | |
48 | 0ex | |
|
49 | 47 48 | ifex | |
50 | 45 49 | dmmpo | |
51 | 44 50 | eleq2s | |
52 | df-ov | |
|
53 | ndmfv | |
|
54 | 52 53 | eqtrid | |
55 | 51 54 | pm2.61i | |