Metamath Proof Explorer


Theorem pgindlem

Description: Lemma for pgind . (Contributed by Emmett Weisz, 27-May-2024) (New usage is discouraged.)

Ref Expression
Assertion pgindlem x 𝒫 z × 𝒫 z 1 st x 2 nd x z

Proof

Step Hyp Ref Expression
1 xp1st x 𝒫 z × 𝒫 z 1 st x 𝒫 z
2 1 elpwid x 𝒫 z × 𝒫 z 1 st x z
3 xp2nd x 𝒫 z × 𝒫 z 2 nd x 𝒫 z
4 3 elpwid x 𝒫 z × 𝒫 z 2 nd x z
5 2 4 unssd x 𝒫 z × 𝒫 z 1 st x 2 nd x z