Metamath Proof Explorer


Theorem pgindnf

Description: Version of pgind with extraneous not-free requirements. (Contributed by Emmett Weisz, 27-May-2024) (New usage is discouraged.)

Ref Expression
Hypotheses pgindnf.1 x φ
pgindnf.2 y φ
pgindnf.3 x = y ψ χ
pgindnf.4 y = A χ θ
pgindnf.5 φ x y 1 st x 2 nd x χ ψ
Assertion pgindnf φ A Pg θ

Proof

Step Hyp Ref Expression
1 pgindnf.1 x φ
2 pgindnf.2 y φ
3 pgindnf.3 x = y ψ χ
4 pgindnf.4 y = A χ θ
5 pgindnf.5 φ x y 1 st x 2 nd x χ ψ
6 df-pg Pg = setrecs a V 𝒫 a × 𝒫 a
7 nfv x y z χ
8 1 7 nfan x φ y z χ
9 pgindlem x 𝒫 z × 𝒫 z 1 st x 2 nd x z
10 9 sseld x 𝒫 z × 𝒫 z y 1 st x 2 nd x y z
11 10 imim1d x 𝒫 z × 𝒫 z y z χ y 1 st x 2 nd x χ
12 11 ralimdv2 x 𝒫 z × 𝒫 z y z χ y 1 st x 2 nd x χ
13 5 19.21bi φ y 1 st x 2 nd x χ ψ
14 12 13 sylan9r φ x 𝒫 z × 𝒫 z y z χ ψ
15 14 impancom φ y z χ x 𝒫 z × 𝒫 z ψ
16 8 15 ralrimi φ y z χ x 𝒫 z × 𝒫 z ψ
17 vex z V
18 pweq a = z 𝒫 a = 𝒫 z
19 18 sqxpeqd a = z 𝒫 a × 𝒫 a = 𝒫 z × 𝒫 z
20 eqid a V 𝒫 a × 𝒫 a = a V 𝒫 a × 𝒫 a
21 vpwex 𝒫 z V
22 21 21 xpex 𝒫 z × 𝒫 z V
23 19 20 22 fvmpt z V a V 𝒫 a × 𝒫 a z = 𝒫 z × 𝒫 z
24 17 23 ax-mp a V 𝒫 a × 𝒫 a z = 𝒫 z × 𝒫 z
25 24 eqcomi 𝒫 z × 𝒫 z = a V 𝒫 a × 𝒫 a z
26 25 a1i x = y 𝒫 z × 𝒫 z = a V 𝒫 a × 𝒫 a z
27 3 26 cbvralv2 x 𝒫 z × 𝒫 z ψ y a V 𝒫 a × 𝒫 a z χ
28 16 27 sylib φ y z χ y a V 𝒫 a × 𝒫 a z χ
29 28 ex φ y z χ y a V 𝒫 a × 𝒫 a z χ
30 29 alrimiv φ z y z χ y a V 𝒫 a × 𝒫 a z χ
31 6 4 30 setis φ A Pg θ