Step |
Hyp |
Ref |
Expression |
1 |
|
pgindnf.1 |
|- F/ x ph |
2 |
|
pgindnf.2 |
|- F/ y ph |
3 |
|
pgindnf.3 |
|- ( x = y -> ( ps <-> ch ) ) |
4 |
|
pgindnf.4 |
|- ( y = A -> ( ch <-> th ) ) |
5 |
|
pgindnf.5 |
|- ( ph -> A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) ) |
6 |
|
df-pg |
|- Pg = setrecs ( ( a e. _V |-> ( ~P a X. ~P a ) ) ) |
7 |
|
nfv |
|- F/ x A. y e. z ch |
8 |
1 7
|
nfan |
|- F/ x ( ph /\ A. y e. z ch ) |
9 |
|
pgindlem |
|- ( x e. ( ~P z X. ~P z ) -> ( ( 1st ` x ) u. ( 2nd ` x ) ) C_ z ) |
10 |
9
|
sseld |
|- ( x e. ( ~P z X. ~P z ) -> ( y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) -> y e. z ) ) |
11 |
10
|
imim1d |
|- ( x e. ( ~P z X. ~P z ) -> ( ( y e. z -> ch ) -> ( y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) -> ch ) ) ) |
12 |
11
|
ralimdv2 |
|- ( x e. ( ~P z X. ~P z ) -> ( A. y e. z ch -> A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch ) ) |
13 |
5
|
19.21bi |
|- ( ph -> ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) ) |
14 |
12 13
|
sylan9r |
|- ( ( ph /\ x e. ( ~P z X. ~P z ) ) -> ( A. y e. z ch -> ps ) ) |
15 |
14
|
impancom |
|- ( ( ph /\ A. y e. z ch ) -> ( x e. ( ~P z X. ~P z ) -> ps ) ) |
16 |
8 15
|
ralrimi |
|- ( ( ph /\ A. y e. z ch ) -> A. x e. ( ~P z X. ~P z ) ps ) |
17 |
|
vex |
|- z e. _V |
18 |
|
pweq |
|- ( a = z -> ~P a = ~P z ) |
19 |
18
|
sqxpeqd |
|- ( a = z -> ( ~P a X. ~P a ) = ( ~P z X. ~P z ) ) |
20 |
|
eqid |
|- ( a e. _V |-> ( ~P a X. ~P a ) ) = ( a e. _V |-> ( ~P a X. ~P a ) ) |
21 |
|
vpwex |
|- ~P z e. _V |
22 |
21 21
|
xpex |
|- ( ~P z X. ~P z ) e. _V |
23 |
19 20 22
|
fvmpt |
|- ( z e. _V -> ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) = ( ~P z X. ~P z ) ) |
24 |
17 23
|
ax-mp |
|- ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) = ( ~P z X. ~P z ) |
25 |
24
|
eqcomi |
|- ( ~P z X. ~P z ) = ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) |
26 |
25
|
a1i |
|- ( x = y -> ( ~P z X. ~P z ) = ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ) |
27 |
3 26
|
cbvralv2 |
|- ( A. x e. ( ~P z X. ~P z ) ps <-> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch ) |
28 |
16 27
|
sylib |
|- ( ( ph /\ A. y e. z ch ) -> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch ) |
29 |
28
|
ex |
|- ( ph -> ( A. y e. z ch -> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch ) ) |
30 |
29
|
alrimiv |
|- ( ph -> A. z ( A. y e. z ch -> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch ) ) |
31 |
6 4 30
|
setis |
|- ( ph -> ( A e. Pg -> th ) ) |