Metamath Proof Explorer


Theorem pgindnf

Description: Version of pgind with extraneous not-free requirements. (Contributed by Emmett Weisz, 27-May-2024) (New usage is discouraged.)

Ref Expression
Hypotheses pgindnf.1
|- F/ x ph
pgindnf.2
|- F/ y ph
pgindnf.3
|- ( x = y -> ( ps <-> ch ) )
pgindnf.4
|- ( y = A -> ( ch <-> th ) )
pgindnf.5
|- ( ph -> A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) )
Assertion pgindnf
|- ( ph -> ( A e. Pg -> th ) )

Proof

Step Hyp Ref Expression
1 pgindnf.1
 |-  F/ x ph
2 pgindnf.2
 |-  F/ y ph
3 pgindnf.3
 |-  ( x = y -> ( ps <-> ch ) )
4 pgindnf.4
 |-  ( y = A -> ( ch <-> th ) )
5 pgindnf.5
 |-  ( ph -> A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) )
6 df-pg
 |-  Pg = setrecs ( ( a e. _V |-> ( ~P a X. ~P a ) ) )
7 nfv
 |-  F/ x A. y e. z ch
8 1 7 nfan
 |-  F/ x ( ph /\ A. y e. z ch )
9 pgindlem
 |-  ( x e. ( ~P z X. ~P z ) -> ( ( 1st ` x ) u. ( 2nd ` x ) ) C_ z )
10 9 sseld
 |-  ( x e. ( ~P z X. ~P z ) -> ( y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) -> y e. z ) )
11 10 imim1d
 |-  ( x e. ( ~P z X. ~P z ) -> ( ( y e. z -> ch ) -> ( y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) -> ch ) ) )
12 11 ralimdv2
 |-  ( x e. ( ~P z X. ~P z ) -> ( A. y e. z ch -> A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch ) )
13 5 19.21bi
 |-  ( ph -> ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) )
14 12 13 sylan9r
 |-  ( ( ph /\ x e. ( ~P z X. ~P z ) ) -> ( A. y e. z ch -> ps ) )
15 14 impancom
 |-  ( ( ph /\ A. y e. z ch ) -> ( x e. ( ~P z X. ~P z ) -> ps ) )
16 8 15 ralrimi
 |-  ( ( ph /\ A. y e. z ch ) -> A. x e. ( ~P z X. ~P z ) ps )
17 vex
 |-  z e. _V
18 pweq
 |-  ( a = z -> ~P a = ~P z )
19 18 sqxpeqd
 |-  ( a = z -> ( ~P a X. ~P a ) = ( ~P z X. ~P z ) )
20 eqid
 |-  ( a e. _V |-> ( ~P a X. ~P a ) ) = ( a e. _V |-> ( ~P a X. ~P a ) )
21 vpwex
 |-  ~P z e. _V
22 21 21 xpex
 |-  ( ~P z X. ~P z ) e. _V
23 19 20 22 fvmpt
 |-  ( z e. _V -> ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) = ( ~P z X. ~P z ) )
24 17 23 ax-mp
 |-  ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) = ( ~P z X. ~P z )
25 24 eqcomi
 |-  ( ~P z X. ~P z ) = ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z )
26 25 a1i
 |-  ( x = y -> ( ~P z X. ~P z ) = ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) )
27 3 26 cbvralv2
 |-  ( A. x e. ( ~P z X. ~P z ) ps <-> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch )
28 16 27 sylib
 |-  ( ( ph /\ A. y e. z ch ) -> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch )
29 28 ex
 |-  ( ph -> ( A. y e. z ch -> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch ) )
30 29 alrimiv
 |-  ( ph -> A. z ( A. y e. z ch -> A. y e. ( ( a e. _V |-> ( ~P a X. ~P a ) ) ` z ) ch ) )
31 6 4 30 setis
 |-  ( ph -> ( A e. Pg -> th ) )