| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pgind.1 |  |-  ( x = y -> ( ps <-> ch ) ) | 
						
							| 2 |  | pgind.2 |  |-  ( y = A -> ( ch <-> th ) ) | 
						
							| 3 |  | pgind.3 |  |-  ( ph -> A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) ) | 
						
							| 4 |  | 19.8a |  |-  ( ph -> E. y ph ) | 
						
							| 5 |  | 19.8a |  |-  ( E. y ph -> E. x E. y ph ) | 
						
							| 6 |  | nfe1 |  |-  F/ x E. x E. y ph | 
						
							| 7 |  | nfe1 |  |-  F/ y E. y ph | 
						
							| 8 | 7 | nfex |  |-  F/ y E. x E. y ph | 
						
							| 9 |  | nfa1 |  |-  F/ x A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) | 
						
							| 10 |  | nfra1 |  |-  F/ y A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch | 
						
							| 11 |  | nfv |  |-  F/ y ps | 
						
							| 12 | 10 11 | nfim |  |-  F/ y ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) | 
						
							| 13 | 12 | nfal |  |-  F/ y A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) | 
						
							| 14 | 13 3 | exlimi |  |-  ( E. y ph -> A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) ) | 
						
							| 15 | 9 14 | exlimi |  |-  ( E. x E. y ph -> A. x ( A. y e. ( ( 1st ` x ) u. ( 2nd ` x ) ) ch -> ps ) ) | 
						
							| 16 | 6 8 1 2 15 | pgindnf |  |-  ( E. x E. y ph -> ( A e. Pg -> th ) ) | 
						
							| 17 | 4 5 16 | 3syl |  |-  ( ph -> ( A e. Pg -> th ) ) |