Metamath Proof Explorer


Theorem pgind

Description: Induction on partizan games. (Contributed by Emmett Weisz, 27-May-2024)

Ref Expression
Hypotheses pgind.1 ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
pgind.2 ( 𝑦 = 𝐴 → ( 𝜒𝜃 ) )
pgind.3 ( 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 ) )
Assertion pgind ( 𝜑 → ( 𝐴 ∈ Pg → 𝜃 ) )

Proof

Step Hyp Ref Expression
1 pgind.1 ( 𝑥 = 𝑦 → ( 𝜓𝜒 ) )
2 pgind.2 ( 𝑦 = 𝐴 → ( 𝜒𝜃 ) )
3 pgind.3 ( 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 ) )
4 19.8a ( 𝜑 → ∃ 𝑦 𝜑 )
5 19.8a ( ∃ 𝑦 𝜑 → ∃ 𝑥𝑦 𝜑 )
6 nfe1 𝑥𝑥𝑦 𝜑
7 nfe1 𝑦𝑦 𝜑
8 7 nfex 𝑦𝑥𝑦 𝜑
9 nfa1 𝑥𝑥 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 )
10 nfra1 𝑦𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒
11 nfv 𝑦 𝜓
12 10 11 nfim 𝑦 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 )
13 12 nfal 𝑦𝑥 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 )
14 13 3 exlimi ( ∃ 𝑦 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 ) )
15 9 14 exlimi ( ∃ 𝑥𝑦 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) 𝜒𝜓 ) )
16 6 8 1 2 15 pgindnf ( ∃ 𝑥𝑦 𝜑 → ( 𝐴 ∈ Pg → 𝜃 ) )
17 4 5 16 3syl ( 𝜑 → ( 𝐴 ∈ Pg → 𝜃 ) )