Step |
Hyp |
Ref |
Expression |
1 |
|
pgindnf.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
pgindnf.2 |
⊢ Ⅎ 𝑦 𝜑 |
3 |
|
pgindnf.3 |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) |
4 |
|
pgindnf.4 |
⊢ ( 𝑦 = 𝐴 → ( 𝜒 ↔ 𝜃 ) ) |
5 |
|
pgindnf.5 |
⊢ ( 𝜑 → ∀ 𝑥 ( ∀ 𝑦 ∈ ( ( 1st ‘ 𝑥 ) ∪ ( 2nd ‘ 𝑥 ) ) 𝜒 → 𝜓 ) ) |
6 |
|
df-pg |
⊢ Pg = setrecs ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝑧 𝜒 |
8 |
1 7
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 𝜒 ) |
9 |
|
pgindlem |
⊢ ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( ( 1st ‘ 𝑥 ) ∪ ( 2nd ‘ 𝑥 ) ) ⊆ 𝑧 ) |
10 |
9
|
sseld |
⊢ ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( 𝑦 ∈ ( ( 1st ‘ 𝑥 ) ∪ ( 2nd ‘ 𝑥 ) ) → 𝑦 ∈ 𝑧 ) ) |
11 |
10
|
imim1d |
⊢ ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( ( 𝑦 ∈ 𝑧 → 𝜒 ) → ( 𝑦 ∈ ( ( 1st ‘ 𝑥 ) ∪ ( 2nd ‘ 𝑥 ) ) → 𝜒 ) ) ) |
12 |
11
|
ralimdv2 |
⊢ ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( ∀ 𝑦 ∈ 𝑧 𝜒 → ∀ 𝑦 ∈ ( ( 1st ‘ 𝑥 ) ∪ ( 2nd ‘ 𝑥 ) ) 𝜒 ) ) |
13 |
5
|
19.21bi |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ( ( 1st ‘ 𝑥 ) ∪ ( 2nd ‘ 𝑥 ) ) 𝜒 → 𝜓 ) ) |
14 |
12 13
|
sylan9r |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) ) → ( ∀ 𝑦 ∈ 𝑧 𝜒 → 𝜓 ) ) |
15 |
14
|
impancom |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 𝜒 ) → ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → 𝜓 ) ) |
16 |
8 15
|
ralrimi |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 𝜒 ) → ∀ 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) 𝜓 ) |
17 |
|
vex |
⊢ 𝑧 ∈ V |
18 |
|
pweq |
⊢ ( 𝑎 = 𝑧 → 𝒫 𝑎 = 𝒫 𝑧 ) |
19 |
18
|
sqxpeqd |
⊢ ( 𝑎 = 𝑧 → ( 𝒫 𝑎 × 𝒫 𝑎 ) = ( 𝒫 𝑧 × 𝒫 𝑧 ) ) |
20 |
|
eqid |
⊢ ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) = ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) |
21 |
|
vpwex |
⊢ 𝒫 𝑧 ∈ V |
22 |
21 21
|
xpex |
⊢ ( 𝒫 𝑧 × 𝒫 𝑧 ) ∈ V |
23 |
19 20 22
|
fvmpt |
⊢ ( 𝑧 ∈ V → ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) = ( 𝒫 𝑧 × 𝒫 𝑧 ) ) |
24 |
17 23
|
ax-mp |
⊢ ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) = ( 𝒫 𝑧 × 𝒫 𝑧 ) |
25 |
24
|
eqcomi |
⊢ ( 𝒫 𝑧 × 𝒫 𝑧 ) = ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) |
26 |
25
|
a1i |
⊢ ( 𝑥 = 𝑦 → ( 𝒫 𝑧 × 𝒫 𝑧 ) = ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) ) |
27 |
3 26
|
cbvralv2 |
⊢ ( ∀ 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) 𝜓 ↔ ∀ 𝑦 ∈ ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) 𝜒 ) |
28 |
16 27
|
sylib |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝑧 𝜒 ) → ∀ 𝑦 ∈ ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) 𝜒 ) |
29 |
28
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑧 𝜒 → ∀ 𝑦 ∈ ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) 𝜒 ) ) |
30 |
29
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( ∀ 𝑦 ∈ 𝑧 𝜒 → ∀ 𝑦 ∈ ( ( 𝑎 ∈ V ↦ ( 𝒫 𝑎 × 𝒫 𝑎 ) ) ‘ 𝑧 ) 𝜒 ) ) |
31 |
6 4 30
|
setis |
⊢ ( 𝜑 → ( 𝐴 ∈ Pg → 𝜃 ) ) |