Metamath Proof Explorer


Theorem pgindlem

Description: Lemma for pgind . (Contributed by Emmett Weisz, 27-May-2024) (New usage is discouraged.)

Ref Expression
Assertion pgindlem ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) ⊆ 𝑧 )

Proof

Step Hyp Ref Expression
1 xp1st ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( 1st𝑥 ) ∈ 𝒫 𝑧 )
2 1 elpwid ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( 1st𝑥 ) ⊆ 𝑧 )
3 xp2nd ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( 2nd𝑥 ) ∈ 𝒫 𝑧 )
4 3 elpwid ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( 2nd𝑥 ) ⊆ 𝑧 )
5 2 4 unssd ( 𝑥 ∈ ( 𝒫 𝑧 × 𝒫 𝑧 ) → ( ( 1st𝑥 ) ∪ ( 2nd𝑥 ) ) ⊆ 𝑧 )