Metamath Proof Explorer


Theorem phival

Description: Value of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phival NϕN=x1N|xgcdN=1

Proof

Step Hyp Ref Expression
1 oveq2 n=N1n=1N
2 oveq2 n=Nxgcdn=xgcdN
3 2 eqeq1d n=Nxgcdn=1xgcdN=1
4 1 3 rabeqbidv n=Nx1n|xgcdn=1=x1N|xgcdN=1
5 4 fveq2d n=Nx1n|xgcdn=1=x1N|xgcdN=1
6 df-phi ϕ=nx1n|xgcdn=1
7 fvex x1N|xgcdN=1V
8 5 6 7 fvmpt NϕN=x1N|xgcdN=1