Metamath Proof Explorer


Theorem phlstr

Description: A constructed pre-Hilbert space is a structure. Starting from lmodstr (which has 4 members), we chain strleun once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
Assertion phlstr HStruct18

Proof

Step Hyp Ref Expression
1 phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
2 df-pr ndx·˙𝑖ndx,˙=ndx·˙𝑖ndx,˙
3 2 uneq2i BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
4 unass BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
5 3 1 4 3eqtr4i H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
6 eqid BasendxB+ndx+˙ScalarndxTndx·˙=BasendxB+ndx+˙ScalarndxTndx·˙
7 6 lmodstr BasendxB+ndx+˙ScalarndxTndx·˙Struct16
8 8nn 8
9 ipndx 𝑖ndx=8
10 8 9 strle1 𝑖ndx,˙Struct88
11 6lt8 6<8
12 7 10 11 strleun BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙Struct18
13 5 12 eqbrtri HStruct18