Metamath Proof Explorer


Theorem pjhfval

Description: The value of the projection map. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjhfval HCprojH=xιzH|yHx=z+y

Proof

Step Hyp Ref Expression
1 id h=Hh=H
2 fveq2 h=Hh=H
3 2 rexeqdv h=Hyhx=z+yyHx=z+y
4 1 3 riotaeqbidv h=Hιzh|yhx=z+y=ιzH|yHx=z+y
5 4 mpteq2dv h=Hxιzh|yhx=z+y=xιzH|yHx=z+y
6 df-pjh proj=hCxιzh|yhx=z+y
7 ax-hilex V
8 7 mptex xιzH|yHx=z+yV
9 5 6 8 fvmpt HCprojH=xιzH|yHx=z+y