Metamath Proof Explorer


Theorem pjhval

Description: Value of a projection. (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion pjhval HCAprojHA=ιxH|yHA=x+y

Proof

Step Hyp Ref Expression
1 pjhfval HCprojH=zιxH|yHz=x+y
2 1 fveq1d HCprojHA=zιxH|yHz=x+yA
3 eqeq1 z=Az=x+yA=x+y
4 3 rexbidv z=AyHz=x+yyHA=x+y
5 4 riotabidv z=AιxH|yHz=x+y=ιxH|yHA=x+y
6 eqid zιxH|yHz=x+y=zιxH|yHz=x+y
7 riotaex ιxH|yHA=x+yV
8 5 6 7 fvmpt AzιxH|yHz=x+yA=ιxH|yHA=x+y
9 2 8 sylan9eq HCAprojHA=ιxH|yHA=x+y