Metamath Proof Explorer


Theorem pjpreeq

Description: Equality with a projection. This version of pjeq does not assume the Axiom of Choice via pjhth . (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjpreeq H C A H + H proj H A = B B H x H A = B + x

Proof

Step Hyp Ref Expression
1 chsh H C H S
2 shocsh H S H S
3 shsel H S H S A H + H y H x H A = y + x
4 1 2 3 syl2anc2 H C A H + H y H x H A = y + x
5 4 biimpa H C A H + H y H x H A = y + x
6 1 2 syl H C H S
7 ocin H S H H = 0
8 1 7 syl H C H H = 0
9 pjhthmo H S H S H H = 0 * y y H x H A = y + x
10 1 6 8 9 syl3anc H C * y y H x H A = y + x
11 10 adantr H C A H + H * y y H x H A = y + x
12 reu5 ∃! y H x H A = y + x y H x H A = y + x * y H x H A = y + x
13 df-rmo * y H x H A = y + x * y y H x H A = y + x
14 13 anbi2i y H x H A = y + x * y H x H A = y + x y H x H A = y + x * y y H x H A = y + x
15 12 14 bitri ∃! y H x H A = y + x y H x H A = y + x * y y H x H A = y + x
16 5 11 15 sylanbrc H C A H + H ∃! y H x H A = y + x
17 riotacl ∃! y H x H A = y + x ι y H | x H A = y + x H
18 16 17 syl H C A H + H ι y H | x H A = y + x H
19 eleq1 ι y H | x H A = y + x = B ι y H | x H A = y + x H B H
20 18 19 syl5ibcom H C A H + H ι y H | x H A = y + x = B B H
21 20 pm4.71rd H C A H + H ι y H | x H A = y + x = B B H ι y H | x H A = y + x = B
22 shsss H S H S H + H
23 1 2 22 syl2anc2 H C H + H
24 23 sselda H C A H + H A
25 pjhval H C A proj H A = ι y H | x H A = y + x
26 24 25 syldan H C A H + H proj H A = ι y H | x H A = y + x
27 26 eqeq1d H C A H + H proj H A = B ι y H | x H A = y + x = B
28 id B H B H
29 oveq1 y = B y + x = B + x
30 29 eqeq2d y = B A = y + x A = B + x
31 30 rexbidv y = B x H A = y + x x H A = B + x
32 31 riota2 B H ∃! y H x H A = y + x x H A = B + x ι y H | x H A = y + x = B
33 28 16 32 syl2anr H C A H + H B H x H A = B + x ι y H | x H A = y + x = B
34 33 pm5.32da H C A H + H B H x H A = B + x B H ι y H | x H A = y + x = B
35 21 27 34 3bitr4d H C A H + H proj H A = B B H x H A = B + x