Metamath Proof Explorer


Theorem pjmf1

Description: The projector function maps one-to-one into the set of Hilbert space operators. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion pjmf1 proj:C1-1

Proof

Step Hyp Ref Expression
1 pjmfn projFnC
2 pjhf xCprojx:
3 ax-hilex V
4 3 3 elmap projxprojx:
5 2 4 sylibr xCprojx
6 5 rgen xCprojx
7 ffnfv proj:CprojFnCxCprojx
8 1 6 7 mpbir2an proj:C
9 pj11 xCyCprojx=projyx=y
10 9 biimpd xCyCprojx=projyx=y
11 10 rgen2 xCyCprojx=projyx=y
12 dff13 proj:C1-1proj:CxCyCprojx=projyx=y
13 8 11 12 mpbir2an proj:C1-1