Metamath Proof Explorer


Theorem pjoml3i

Description: Variation of orthomodular law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 AC
pjoml2.2 BC
Assertion pjoml3i BAAAB=B

Proof

Step Hyp Ref Expression
1 pjoml2.1 AC
2 pjoml2.2 BC
3 1 choccli AC
4 2 choccli BC
5 3 4 pjoml2i ABAAB=B
6 2 1 chsscon3i BAAB
7 eqcom AAB=BB=AAB
8 3 choccli AC
9 8 4 chincli ABC
10 1 9 chdmj2i AAB=AAB
11 3 2 chdmm4i AB=AB
12 11 ineq2i AAB=AAB
13 10 12 eqtri AAB=AAB
14 13 eqeq1i AAB=BAAB=B
15 3 9 chjcli AABC
16 2 15 chcon2i B=AABAAB=B
17 7 14 16 3bitr3i AAB=BAAB=B
18 5 6 17 3imtr4i BAAAB=B