Metamath Proof Explorer


Theorem pjssumi

Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjco.1 G C
pjco.2 H C
Assertion pjssumi G H proj G + H = proj G + op proj H

Proof

Step Hyp Ref Expression
1 pjco.1 G C
2 pjco.2 H C
3 1 2 osumi G H G + H = G H
4 3 fveq2d G H proj G + H = proj G H
5 1 2 pjscji G H proj G H = proj G + op proj H
6 4 5 eqtrd G H proj G + H = proj G + op proj H