Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Univariate polynomials
ply1sca2
Next ⟩
ply1mpl0
Metamath Proof Explorer
Ascii
Unicode
Theorem
ply1sca2
Description:
Scalars of a univariate polynomial ring.
(Contributed by
Stefan O'Rear
, 26-Mar-2015)
Ref
Expression
Hypothesis
ply1lmod.p
⊢
P
=
Poly
1
⁡
R
Assertion
ply1sca2
⊢
I
⁡
R
=
Scalar
⁡
P
Proof
Step
Hyp
Ref
Expression
1
ply1lmod.p
⊢
P
=
Poly
1
⁡
R
2
fvi
⊢
R
∈
V
→
I
⁡
R
=
R
3
1
ply1sca
⊢
R
∈
V
→
R
=
Scalar
⁡
P
4
2
3
eqtrd
⊢
R
∈
V
→
I
⁡
R
=
Scalar
⁡
P
5
fvprc
⊢
¬
R
∈
V
→
I
⁡
R
=
∅
6
fvprc
⊢
¬
R
∈
V
→
Poly
1
⁡
R
=
∅
7
6
fveq2d
⊢
¬
R
∈
V
→
Scalar
⁡
Poly
1
⁡
R
=
Scalar
⁡
∅
8
1
fveq2i
⊢
Scalar
⁡
P
=
Scalar
⁡
Poly
1
⁡
R
9
scaid
⊢
Scalar
=
Slot
Scalar
⁡
ndx
10
9
str0
⊢
∅
=
Scalar
⁡
∅
11
7
8
10
3eqtr4g
⊢
¬
R
∈
V
→
Scalar
⁡
P
=
∅
12
5
11
eqtr4d
⊢
¬
R
∈
V
→
I
⁡
R
=
Scalar
⁡
P
13
4
12
pm2.61i
⊢
I
⁡
R
=
Scalar
⁡
P