Metamath Proof Explorer


Theorem ply1sca2

Description: Scalars of a univariate polynomial ring. (Contributed by Stefan O'Rear, 26-Mar-2015)

Ref Expression
Hypothesis ply1lmod.p P = Poly 1 R
Assertion ply1sca2 I R = Scalar P

Proof

Step Hyp Ref Expression
1 ply1lmod.p P = Poly 1 R
2 fvi R V I R = R
3 1 ply1sca R V R = Scalar P
4 2 3 eqtrd R V I R = Scalar P
5 fvprc ¬ R V I R =
6 fvprc ¬ R V Poly 1 R =
7 6 fveq2d ¬ R V Scalar Poly 1 R = Scalar
8 1 fveq2i Scalar P = Scalar Poly 1 R
9 scaid Scalar = Slot Scalar ndx
10 9 str0 = Scalar
11 7 8 10 3eqtr4g ¬ R V Scalar P =
12 5 11 eqtr4d ¬ R V I R = Scalar P
13 4 12 pm2.61i I R = Scalar P