Description: Theorem *14.24 in WhiteheadRussell p. 191. (Contributed by Andrew Salmon, 12-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | pm14.24 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 | |
|
2 | nfsbc1v | |
|
3 | pm14.12 | |
|
4 | 3 | 19.21bbi | |
5 | 4 | ancomsd | |
6 | 5 | expdimp | |
7 | pm13.13b | |
|
8 | 7 | ex | |
9 | 8 | adantl | |
10 | 6 9 | impbid | |
11 | 10 | ex | |
12 | 1 2 11 | alrimd | |
13 | iotaval | |
|
14 | 13 | eqcomd | |
15 | 12 14 | syl6 | |
16 | iota4 | |
|
17 | dfsbcq | |
|
18 | 16 17 | syl5ibrcom | |
19 | 15 18 | impbid | |
20 | 19 | alrimiv | |