Metamath Proof Explorer


Theorem pm14.24

Description: Theorem *14.24 in WhiteheadRussell p. 191. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion pm14.24 ∃!xφy[˙y/x]˙φy=ιx|φ

Proof

Step Hyp Ref Expression
1 nfeu1 x∃!xφ
2 nfsbc1v x[˙y/x]˙φ
3 pm14.12 ∃!xφxyφ[˙y/x]˙φx=y
4 3 19.21bbi ∃!xφφ[˙y/x]˙φx=y
5 4 ancomsd ∃!xφ[˙y/x]˙φφx=y
6 5 expdimp ∃!xφ[˙y/x]˙φφx=y
7 pm13.13b [˙y/x]˙φx=yφ
8 7 ex [˙y/x]˙φx=yφ
9 8 adantl ∃!xφ[˙y/x]˙φx=yφ
10 6 9 impbid ∃!xφ[˙y/x]˙φφx=y
11 10 ex ∃!xφ[˙y/x]˙φφx=y
12 1 2 11 alrimd ∃!xφ[˙y/x]˙φxφx=y
13 iotaval xφx=yιx|φ=y
14 13 eqcomd xφx=yy=ιx|φ
15 12 14 syl6 ∃!xφ[˙y/x]˙φy=ιx|φ
16 iota4 ∃!xφ[˙ιx|φ/x]˙φ
17 dfsbcq y=ιx|φ[˙y/x]˙φ[˙ιx|φ/x]˙φ
18 16 17 syl5ibrcom ∃!xφy=ιx|φ[˙y/x]˙φ
19 15 18 impbid ∃!xφ[˙y/x]˙φy=ιx|φ
20 19 alrimiv ∃!xφy[˙y/x]˙φy=ιx|φ