Metamath Proof Explorer


Theorem pm2.61d

Description: Deduction eliminating an antecedent. (Contributed by NM, 27-Apr-1994) (Proof shortened by Wolf Lammen, 12-Sep-2013)

Ref Expression
Hypotheses pm2.61d.1 φψχ
pm2.61d.2 φ¬ψχ
Assertion pm2.61d φχ

Proof

Step Hyp Ref Expression
1 pm2.61d.1 φψχ
2 pm2.61d.2 φ¬ψχ
3 2 con1d φ¬χψ
4 3 1 syld φ¬χχ
5 4 pm2.18d φχ