Metamath Proof Explorer


Theorem pm2.61d1

Description: Inference eliminating an antecedent. (Contributed by NM, 15-Jul-2005)

Ref Expression
Hypotheses pm2.61d1.1 φψχ
pm2.61d1.2 ¬ψχ
Assertion pm2.61d1 φχ

Proof

Step Hyp Ref Expression
1 pm2.61d1.1 φψχ
2 pm2.61d1.2 ¬ψχ
3 2 a1i φ¬ψχ
4 1 3 pm2.61d φχ