Metamath Proof Explorer


Theorem pm2.65da

Description: Deduction for proof by contradiction. (Contributed by NM, 12-Jun-2014)

Ref Expression
Hypotheses pm2.65da.1 φψχ
pm2.65da.2 φψ¬χ
Assertion pm2.65da φ¬ψ

Proof

Step Hyp Ref Expression
1 pm2.65da.1 φψχ
2 pm2.65da.2 φψ¬χ
3 1 ex φψχ
4 2 ex φψ¬χ
5 3 4 pm2.65d φ¬ψ