Metamath Proof Explorer


Theorem pm4.15

Description: Theorem *4.15 of WhiteheadRussell p. 117. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 18-Nov-2012)

Ref Expression
Assertion pm4.15 φ ψ ¬ χ ψ χ ¬ φ

Proof

Step Hyp Ref Expression
1 con2b ψ χ ¬ φ φ ¬ ψ χ
2 nan φ ¬ ψ χ φ ψ ¬ χ
3 1 2 bitr2i φ ψ ¬ χ ψ χ ¬ φ