Metamath Proof Explorer


Theorem pmtrdifel

Description: A transposition of elements of a set without a special element corresponds to a transposition of elements of the set. (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
Assertion pmtrdifel tTrRxNKtx=rx

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 eqid pmTrspNdomtI=pmTrspNdomtI
4 1 2 3 pmtrdifellem1 tTpmTrspNdomtIR
5 1 2 3 pmtrdifellem3 tTxNKtx=pmTrspNdomtIx
6 fveq1 r=pmTrspNdomtIrx=pmTrspNdomtIx
7 6 eqeq2d r=pmTrspNdomtItx=rxtx=pmTrspNdomtIx
8 7 ralbidv r=pmTrspNdomtIxNKtx=rxxNKtx=pmTrspNdomtIx
9 8 rspcev pmTrspNdomtIRxNKtx=pmTrspNdomtIxrRxNKtx=rx
10 4 5 9 syl2anc tTrRxNKtx=rx
11 10 rgen tTrRxNKtx=rx