Metamath Proof Explorer


Theorem pmtrdifwrdellem2

Description: Lemma 2 for pmtrdifwrdel . (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
pmtrdifwrdel.0 U=x0..^WpmTrspNdomWxI
Assertion pmtrdifwrdellem2 WWordTW=U

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 pmtrdifwrdel.0 U=x0..^WpmTrspNdomWxI
4 wrdsymbcl WWordTx0..^WWxT
5 eqid pmTrspNdomWxI=pmTrspNdomWxI
6 1 2 5 pmtrdifellem1 WxTpmTrspNdomWxIR
7 4 6 syl WWordTx0..^WpmTrspNdomWxIR
8 7 ralrimiva WWordTx0..^WpmTrspNdomWxIR
9 3 fnmpt x0..^WpmTrspNdomWxIRUFn0..^W
10 hashfn UFn0..^WU=0..^W
11 8 9 10 3syl WWordTU=0..^W
12 lencl WWordTW0
13 hashfzo0 W00..^W=W
14 12 13 syl WWordT0..^W=W
15 11 14 eqtr2d WWordTW=U