Metamath Proof Explorer


Theorem po2ne

Description: Two sets related by a partial order are not equal. (Contributed by AV, 13-Mar-2023)

Ref Expression
Assertion po2ne RPoVAVBVARBAB

Proof

Step Hyp Ref Expression
1 breq1 A=BARBBRB
2 poirr RPoVBV¬BRB
3 2 adantrl RPoVAVBV¬BRB
4 3 pm2.21d RPoVAVBVBRBAB
5 4 ex RPoVAVBVBRBAB
6 5 com13 BRBAVBVRPoVAB
7 1 6 syl6bi A=BARBAVBVRPoVAB
8 7 com24 A=BRPoVAVBVARBAB
9 8 3impd A=BRPoVAVBVARBAB
10 ax-1 ABRPoVAVBVARBAB
11 9 10 pm2.61ine RPoVAVBVARBAB