Metamath Proof Explorer


Theorem pointsetN

Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pointset.a A=AtomsK
pointset.p P=PointsK
Assertion pointsetN KBP=p|aAp=a

Proof

Step Hyp Ref Expression
1 pointset.a A=AtomsK
2 pointset.p P=PointsK
3 elex KBKV
4 fveq2 k=KAtomsk=AtomsK
5 4 1 eqtr4di k=KAtomsk=A
6 5 rexeqdv k=KaAtomskp=aaAp=a
7 6 abbidv k=Kp|aAtomskp=a=p|aAp=a
8 df-pointsN Points=kVp|aAtomskp=a
9 1 fvexi AV
10 9 abrexex p|aAp=aV
11 7 8 10 fvmpt KVPointsK=p|aAp=a
12 2 11 eqtrid KVP=p|aAp=a
13 3 12 syl KBP=p|aAp=a