Metamath Proof Explorer


Theorem pointsetN

Description: The set of points in a Hilbert lattice. (Contributed by NM, 2-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pointset.a A = Atoms K
pointset.p P = Points K
Assertion pointsetN K B P = p | a A p = a

Proof

Step Hyp Ref Expression
1 pointset.a A = Atoms K
2 pointset.p P = Points K
3 elex K B K V
4 fveq2 k = K Atoms k = Atoms K
5 4 1 eqtr4di k = K Atoms k = A
6 5 rexeqdv k = K a Atoms k p = a a A p = a
7 6 abbidv k = K p | a Atoms k p = a = p | a A p = a
8 df-pointsN Points = k V p | a Atoms k p = a
9 1 fvexi A V
10 9 abrexex p | a A p = a V
11 7 8 10 fvmpt K V Points K = p | a A p = a
12 2 11 eqtrid K V P = p | a A p = a
13 3 12 syl K B P = p | a A p = a