Metamath Proof Explorer


Theorem poirr

Description: A partial order is irreflexive. (Contributed by NM, 27-Mar-1997)

Ref Expression
Assertion poirr RPoABA¬BRB

Proof

Step Hyp Ref Expression
1 df-3an BABABABABABA
2 anabs1 BABABABABA
3 anidm BABABA
4 1 2 3 3bitrri BABABABA
5 pocl RPoABABABA¬BRBBRBBRBBRB
6 5 imp RPoABABABA¬BRBBRBBRBBRB
7 6 simpld RPoABABABA¬BRB
8 4 7 sylan2b RPoABA¬BRB