Metamath Proof Explorer


Theorem polvalN

Description: Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses polfval.o ˙=ocK
polfval.a A=AtomsK
polfval.m M=pmapK
polfval.p P=𝑃K
Assertion polvalN KBXAPX=ApXM˙p

Proof

Step Hyp Ref Expression
1 polfval.o ˙=ocK
2 polfval.a A=AtomsK
3 polfval.m M=pmapK
4 polfval.p P=𝑃K
5 2 fvexi AV
6 5 elpw2 X𝒫AXA
7 1 2 3 4 polfvalN KBP=m𝒫AApmM˙p
8 7 fveq1d KBPX=m𝒫AApmM˙pX
9 iineq1 m=XpmM˙p=pXM˙p
10 9 ineq2d m=XApmM˙p=ApXM˙p
11 eqid m𝒫AApmM˙p=m𝒫AApmM˙p
12 5 inex1 ApXM˙pV
13 10 11 12 fvmpt X𝒫Am𝒫AApmM˙pX=ApXM˙p
14 8 13 sylan9eq KBX𝒫APX=ApXM˙p
15 6 14 sylan2br KBXAPX=ApXM˙p