Metamath Proof Explorer


Theorem porpss

Description: Every class is partially ordered by proper subsets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion porpss [⊂]PoA

Proof

Step Hyp Ref Expression
1 pssirr ¬xx
2 psstr xyyzxz
3 vex xV
4 3 brrpss x[⊂]xxx
5 4 notbii ¬x[⊂]x¬xx
6 vex yV
7 6 brrpss x[⊂]yxy
8 vex zV
9 8 brrpss y[⊂]zyz
10 7 9 anbi12i x[⊂]yy[⊂]zxyyz
11 8 brrpss x[⊂]zxz
12 10 11 imbi12i x[⊂]yy[⊂]zx[⊂]zxyyzxz
13 5 12 anbi12i ¬x[⊂]xx[⊂]yy[⊂]zx[⊂]z¬xxxyyzxz
14 1 2 13 mpbir2an ¬x[⊂]xx[⊂]yy[⊂]zx[⊂]z
15 14 rgenw zA¬x[⊂]xx[⊂]yy[⊂]zx[⊂]z
16 15 rgen2w xAyAzA¬x[⊂]xx[⊂]yy[⊂]zx[⊂]z
17 df-po [⊂]PoAxAyAzA¬x[⊂]xx[⊂]yy[⊂]zx[⊂]z
18 16 17 mpbir [⊂]PoA