Metamath Proof Explorer


Theorem sorpss

Description: Express strict ordering under proper subsets, i.e. the notion of a chain of sets. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Assertion sorpss [⊂]OrAxAyAxyyx

Proof

Step Hyp Ref Expression
1 porpss [⊂]PoA
2 1 biantrur xAyAx[⊂]yx=yy[⊂]x[⊂]PoAxAyAx[⊂]yx=yy[⊂]x
3 sspsstri xyyxxyx=yyx
4 vex yV
5 4 brrpss x[⊂]yxy
6 biid x=yx=y
7 vex xV
8 7 brrpss y[⊂]xyx
9 5 6 8 3orbi123i x[⊂]yx=yy[⊂]xxyx=yyx
10 3 9 bitr4i xyyxx[⊂]yx=yy[⊂]x
11 10 2ralbii xAyAxyyxxAyAx[⊂]yx=yy[⊂]x
12 df-so [⊂]OrA[⊂]PoAxAyAx[⊂]yx=yy[⊂]x
13 2 11 12 3bitr4ri [⊂]OrAxAyAxyyx