Metamath Proof Explorer


Theorem ppi2i

Description: Inference form of ppinprm . (Contributed by Mario Carneiro, 21-Sep-2014)

Ref Expression
Hypotheses ppi1i.m M0
ppi1i.n N=M+1
ppi1i.p π_M=K
ppi2i.1 ¬N
Assertion ppi2i π_N=K

Proof

Step Hyp Ref Expression
1 ppi1i.m M0
2 ppi1i.n N=M+1
3 ppi1i.p π_M=K
4 ppi2i.1 ¬N
5 2 fveq2i π_N=π_M+1
6 1 nn0zi M
7 2 eleq1i NM+1
8 4 7 mtbi ¬M+1
9 ppinprm M¬M+1π_M+1=π_M
10 6 8 9 mp2an π_M+1=π_M
11 5 10 3 3eqtri π_N=K