| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprr |
|
| 2 |
1
|
elin2d |
|
| 3 |
|
simprl |
|
| 4 |
|
nelne2 |
|
| 5 |
2 3 4
|
syl2anc |
|
| 6 |
|
velsn |
|
| 7 |
6
|
necon3bbii |
|
| 8 |
5 7
|
sylibr |
|
| 9 |
1
|
elin1d |
|
| 10 |
|
2z |
|
| 11 |
|
zcn |
|
| 12 |
11
|
adantr |
|
| 13 |
|
ax-1cn |
|
| 14 |
|
pncan |
|
| 15 |
12 13 14
|
sylancl |
|
| 16 |
|
elfzuz2 |
|
| 17 |
|
uz2m1nn |
|
| 18 |
9 16 17
|
3syl |
|
| 19 |
15 18
|
eqeltrrd |
|
| 20 |
|
nnuz |
|
| 21 |
|
2m1e1 |
|
| 22 |
21
|
fveq2i |
|
| 23 |
20 22
|
eqtr4i |
|
| 24 |
19 23
|
eleqtrdi |
|
| 25 |
|
fzsuc2 |
|
| 26 |
10 24 25
|
sylancr |
|
| 27 |
9 26
|
eleqtrd |
|
| 28 |
|
elun |
|
| 29 |
27 28
|
sylib |
|
| 30 |
29
|
ord |
|
| 31 |
8 30
|
mt3d |
|
| 32 |
31 2
|
elind |
|
| 33 |
32
|
expr |
|
| 34 |
33
|
ssrdv |
|
| 35 |
|
uzid |
|
| 36 |
35
|
adantr |
|
| 37 |
|
peano2uz |
|
| 38 |
|
fzss2 |
|
| 39 |
|
ssrin |
|
| 40 |
36 37 38 39
|
4syl |
|
| 41 |
34 40
|
eqssd |
|
| 42 |
41
|
fveq2d |
|
| 43 |
|
peano2z |
|
| 44 |
43
|
adantr |
|
| 45 |
|
ppival2 |
|
| 46 |
44 45
|
syl |
|
| 47 |
|
ppival2 |
|
| 48 |
47
|
adantr |
|
| 49 |
42 46 48
|
3eqtr4d |
|