Metamath Proof Explorer


Theorem pr2cv

Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion pr2cv AB2𝑜AVBV

Proof

Step Hyp Ref Expression
1 en2 AB2𝑜xyAB=xy
2 breq1 AB=xyAB2𝑜xy2𝑜
3 vex xV
4 vex yV
5 pr2ne xVyVxy2𝑜xy
6 5 el2v xy2𝑜xy
7 6 biimpi xy2𝑜xy
8 preq12nebg xVyVxyxy=ABx=Ay=Bx=By=A
9 eqvisset x=AAV
10 eqvisset y=BBV
11 9 10 anim12i x=Ay=BAVBV
12 eqvisset x=BBV
13 eqvisset y=AAV
14 12 13 anim12ci x=By=AAVBV
15 11 14 jaoi x=Ay=Bx=By=AAVBV
16 8 15 syl6bi xVyVxyxy=ABAVBV
17 3 4 7 16 mp3an12i xy2𝑜xy=ABAVBV
18 17 com12 xy=ABxy2𝑜AVBV
19 18 eqcoms AB=xyxy2𝑜AVBV
20 2 19 sylbid AB=xyAB2𝑜AVBV
21 20 exlimivv xyAB=xyAB2𝑜AVBV
22 1 21 mpcom AB2𝑜AVBV