Metamath Proof Explorer


Theorem pr2cv

Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023)

Ref Expression
Assertion pr2cv A B 2 𝑜 A V B V

Proof

Step Hyp Ref Expression
1 en2 A B 2 𝑜 x y A B = x y
2 breq1 A B = x y A B 2 𝑜 x y 2 𝑜
3 vex x V
4 vex y V
5 pr2ne x V y V x y 2 𝑜 x y
6 5 el2v x y 2 𝑜 x y
7 6 biimpi x y 2 𝑜 x y
8 preq12nebg x V y V x y x y = A B x = A y = B x = B y = A
9 eqvisset x = A A V
10 eqvisset y = B B V
11 9 10 anim12i x = A y = B A V B V
12 eqvisset x = B B V
13 eqvisset y = A A V
14 12 13 anim12ci x = B y = A A V B V
15 11 14 jaoi x = A y = B x = B y = A A V B V
16 8 15 syl6bi x V y V x y x y = A B A V B V
17 3 4 7 16 mp3an12i x y 2 𝑜 x y = A B A V B V
18 17 com12 x y = A B x y 2 𝑜 A V B V
19 18 eqcoms A B = x y x y 2 𝑜 A V B V
20 2 19 sylbid A B = x y A B 2 𝑜 A V B V
21 20 exlimivv x y A B = x y A B 2 𝑜 A V B V
22 1 21 mpcom A B 2 𝑜 A V B V