Metamath Proof Explorer


Theorem prcoftposcurfuco

Description: The pre-composition functor is the transposed curry of the functor composition bifunctor. (Contributed by Zhi Wang, 2-Nov-2025)

Ref Expression
Hypotheses prcoffunc.r R = D FuncCat E
prcoffunc.e φ E Cat
prcoftposcurfuco.q Q = C FuncCat D
prcoftposcurfuco.o No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
prcoftposcurfuco.m No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) with typecode |-
prcoftposcurfuco.f φ F C Func D G
Assertion prcoftposcurfuco Could not format assertion : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = M ) with typecode |-

Proof

Step Hyp Ref Expression
1 prcoffunc.r R = D FuncCat E
2 prcoffunc.e φ E Cat
3 prcoftposcurfuco.q Q = C FuncCat D
4 prcoftposcurfuco.o Could not format ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) : No typesetting found for |- ( ph -> .o. = ( <. Q , R >. curryF ( ( <. C , D >. o.F E ) o.func ( Q swapF R ) ) ) ) with typecode |-
5 prcoftposcurfuco.m Could not format ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) : No typesetting found for |- ( ph -> M = ( ( 1st ` .o. ) ` <. F , G >. ) ) with typecode |-
6 prcoftposcurfuco.f φ F C Func D G
7 eqid D Func E = D Func E
8 eqid D Nat E = D Nat E
9 6 funcrcl3 φ D Cat
10 relfunc Rel C Func D
11 7 8 9 2 10 6 prcofval Could not format ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. F ) ) ) >. ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = <. ( k e. ( D Func E ) |-> ( k o.func <. F , G >. ) ) , ( k e. ( D Func E ) , l e. ( D Func E ) |-> ( a e. ( k ( D Nat E ) l ) |-> ( a o. F ) ) ) >. ) with typecode |-
12 eqidd φ k D Func E k func F G = k D Func E k func F G
13 eqidd φ k D Func E , l D Func E a k D Nat E l a F = k D Func E , l D Func E a k D Nat E l a F
14 1 7 8 6 2 12 13 3 4 5 precofval3 φ k D Func E k func F G k D Func E , l D Func E a k D Nat E l a F = M
15 11 14 eqtrd Could not format ( ph -> ( <. D , E >. -o.F <. F , G >. ) = M ) : No typesetting found for |- ( ph -> ( <. D , E >. -o.F <. F , G >. ) = M ) with typecode |-